The European Commission's science and knowledge service

Joint Research Centre

EMP-E 2020 -

Modelling Climate Neutrality for the European Green Deal session: Circularity, use of raw material

2020 list of CRMs for the EU and JRC foresight study on CRMs in strategic sectors

Gian Andrea Blengini (JRC.D3)

JRC.D3 team

online, 6.10.2020

Critical Raw Materials for a clean planet

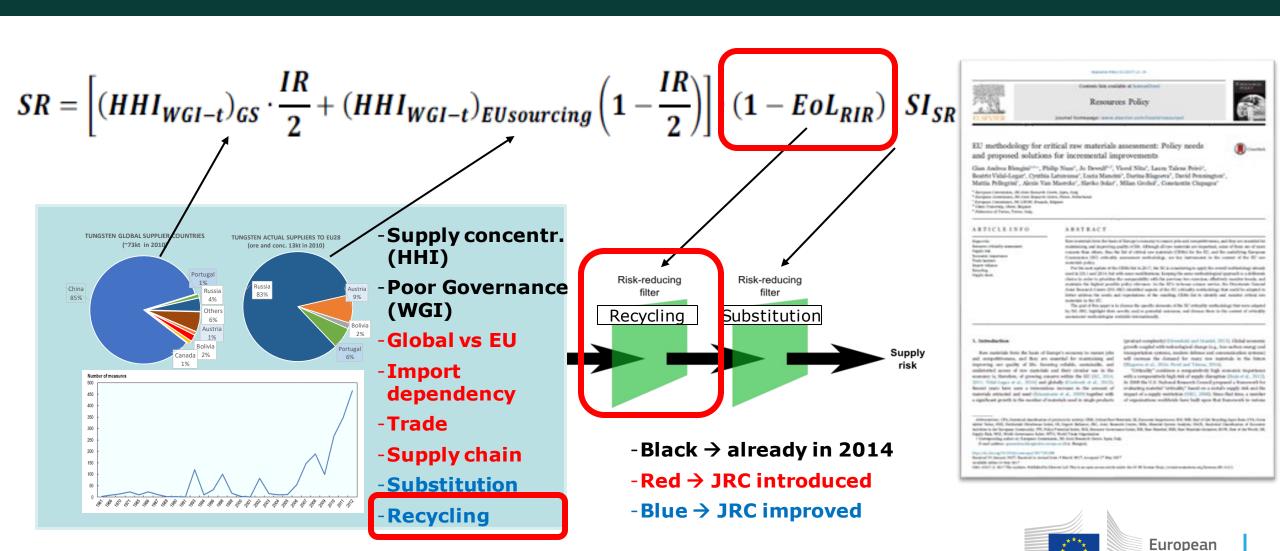
The EU Green Deal recognizes access to resources as a strategic security question to fulfil EU's ambition towards 2050 climate neutrality

Critical Raw Materials for a clean planet

The role of governments and academia is key to secure a sustainable supply and drive the change

Criticality studies inform decision makers on how a secure and sustainable of supply can be achieved through:

- □diversification of supply,
- □resource efficiency,
- □recycling and
- □substitution.


European Commission methodology to define the List of CRMs for the EU

- →2010 first release
- →2013 update
- →2015 revision (*DG JRC*)

SUPPLY RISK -> role of circularity /recycling

Commission

List of materials/groupings covered in the 2020 assessment

Critical Raw Materials 2020

Individual materials		
Aggregates	Germanium	Phosphate rock
Aluminium	Hafnium	Rhenium
Antimony	Helium	Scandium
Arsenic	Hydrogen	Selenium
Baryte	Indium	Sulphur
Bauxite	Iron Ore	Potash
Bentonite	Lead	Silica Sand
Beryllium	Limestone	Silicon Metal
Bismuth	Gold	Silver
Boron (Borates)	Gypsum	Strontium
Cadmium	Lithium	Talc
Chromium	Magnesite	Tantalum
Kaolin clay	Magnesium	Tellurium
Cobalt	Manganese	Tin
Coking coal	Molybdenum	Titanium
Copper	Natural Graphite	Tungsten
Diatomite	Nickel	Vanadium
Feldspar	Niobium	Zinc
Fluorspar	Perlite	Zirconium
Gallium	Phosphorus	
Platinum group metals (PGMs)		
Iridium	Platinum	Ruthenium
Palladium	Rhodium	
Rare earth elements (REEs)		
LREEs	HREEs	
Cerium	Dysprosium	Lutetium
Lanthanum	Erbium	Terbium
Neodymium	Europium	Thulium
Praseodymium	Gadolinium	Ytterbium
Samarium	Holmium	Yttrium
Biotic materials		
Natural Rubber	Natural cork	
Sapele wood	Natural Teak wood	

Legend:	
Green boxes	Materials covered in 2014 but not in the 2011 assessments
Orange boxes	Materials covered in 2017 but not in the 2014 assessments
Light blue boxes	New materials covered in the 2020 assessment

Critical Raw Materials 2020

EUROPEAN COMMISSION Brunsis, 33-2020 COME, 2020; 474 final COMMINICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN COMMINITE. AND THE COMMITTEE OF THE REGIONS. Critical Raw Materials Resilience: Charting a Path towards greater Security and Suttainability

ΕN

COM(2020) 474 final

2020 Critical Raw Materials (30)			
Antimony	Fluorspar	Magnesium	Silicon Metal
Baryte	Gallium	Natural Graphite	Tantalum
Bauxite	Germanium	Natural Rubber	Titanium
Beryllium	Hafnium	Niobium	Vanadium
Bismuth	HREEs	PGMs	Tungsten
Borates	Indium	Phosphate rock	Strontium
Cobalt	Lithium	Phosphorus	
Coking Coal	LREEs	Scandium	

Comparison with previous assessments

2020 list of CRMs compared to 2017 CRM list:

2020 CRMs vs. 2017 CRMs			
Antimony	Germanium	PGMs	Bauxite
Baryte	Hafnium	Phosphate rock	Lithium
Beryllium	HREEs	Phosphorus	Titanium
Bismuth	LREEs	Scandium	
Borate	Indium	Silicon metal	
Cobalt	Magnesium	Tantalum	Strontium
Coking Coal	Natural Graphite	Tungsten	
Fluorspar	Natural Rubber	Vanadium	
Gallium	Niobium	Helium	
Legend:			

<u>Legena</u>:

Black: CRMs in 2020 and 2017

Red: CRMs in 2020, non-CRMs in 2017

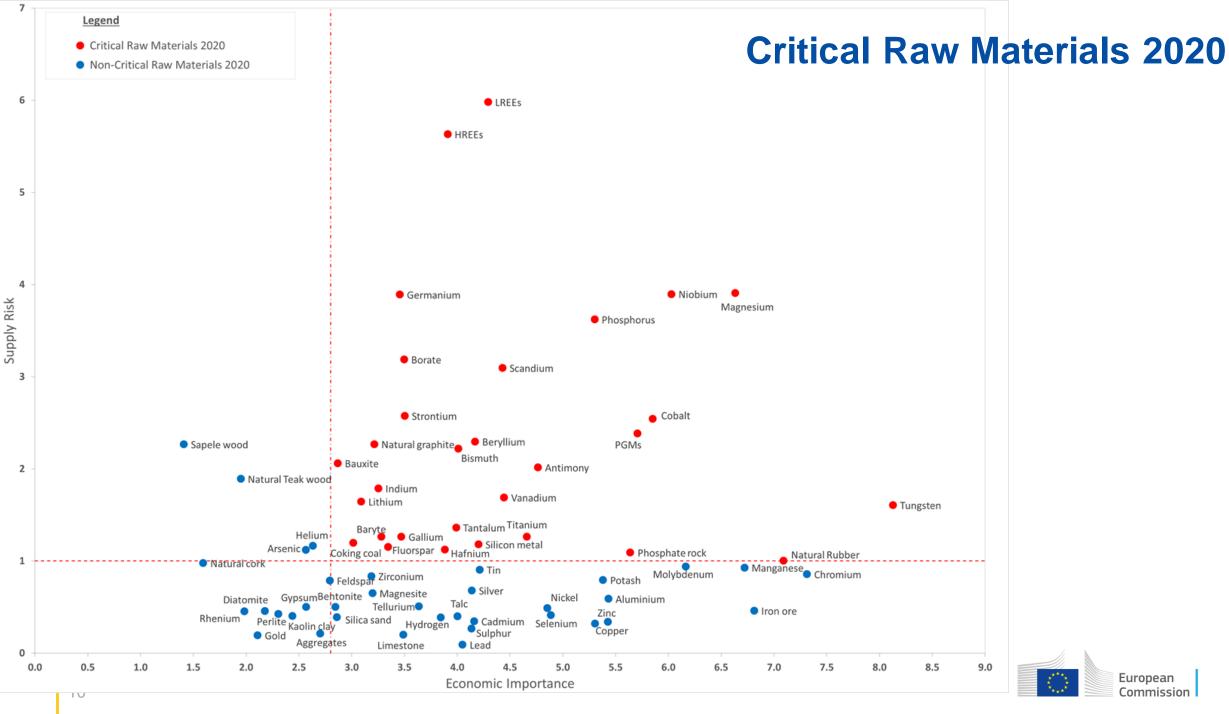
Green: CRMs assessed in 2020 that were not assessed in 2017

Strike: Non-CRMs in 2020 that were critical in 2017

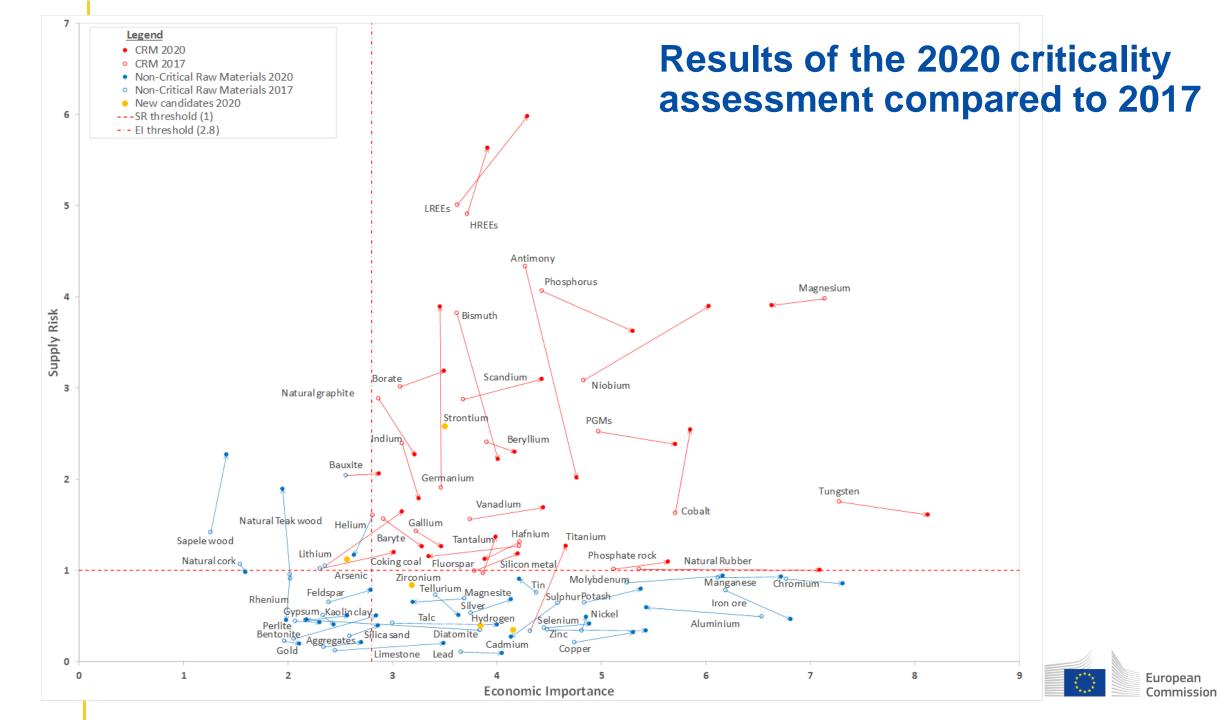
2020 list of CRMs compared to 2014 CRM list:

2020 CRMs vs. 2014 CRMs			
Antimony	Indium	Baryte	Bismuth
Beryllium	Lithium	Bauxite	Phosphorus
Borate	Magnesium	Hafnium	Strontium
Cobalt	Natural Graphite	Natural Rubber	
Coking Coal	Niobium	Scandium	
Fluorspar	PGMs	Tantalum	
Gallium	Phosphate Rock	Titanium	
Germanium	Silicon Metal	Vanadium	
HREEs	Tungsten		
LREEs			

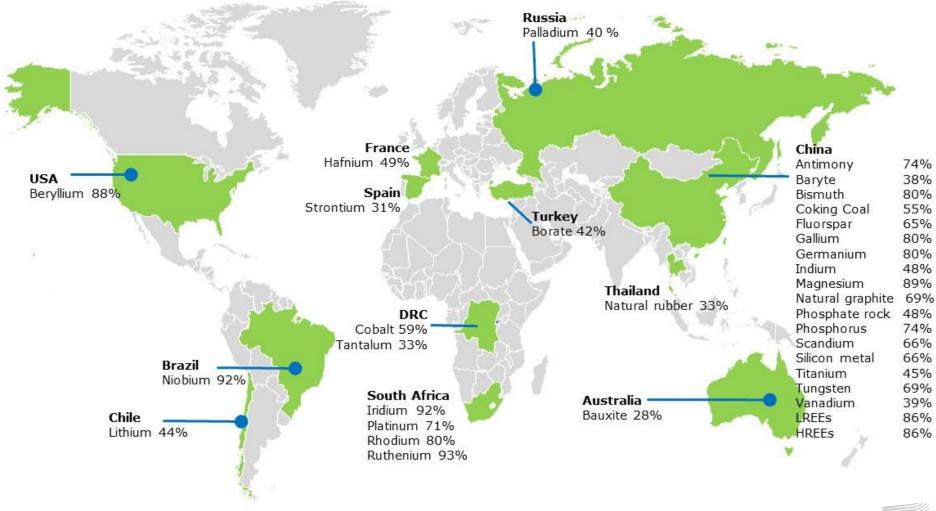
Critical Raw Materials 2020


2011 assessment: 14 CRMs out of 41 raw materials

2014 assessment: 20 CRMs out of 54 raw materials

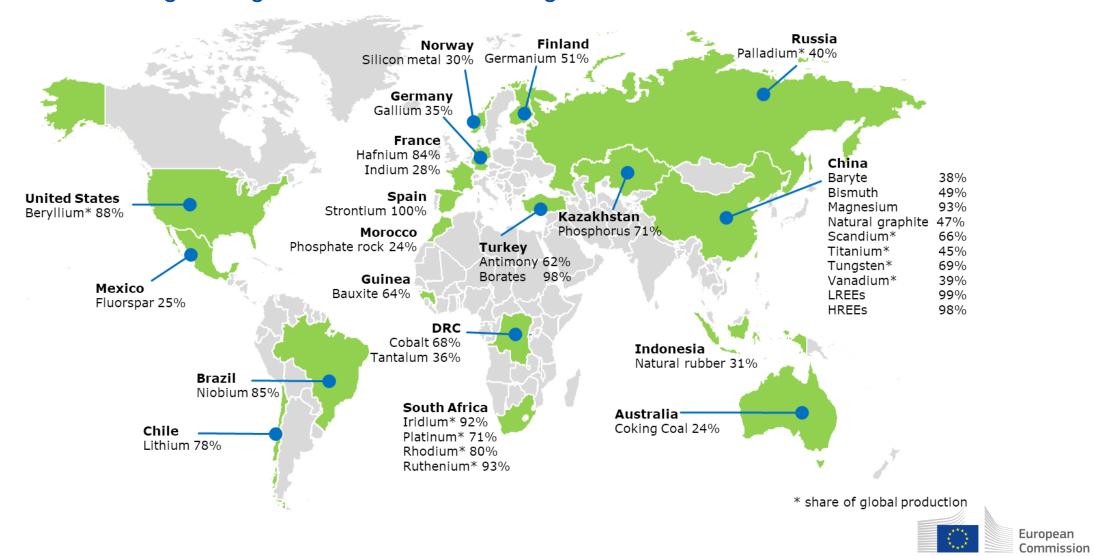

2017 assessment: 26 CRMs out of 61 raw materials (58 individual and 3 grouped materials).

2020 assessment: 30 CRMs out of 66 raw materials (63 individual and 3 grouped materials



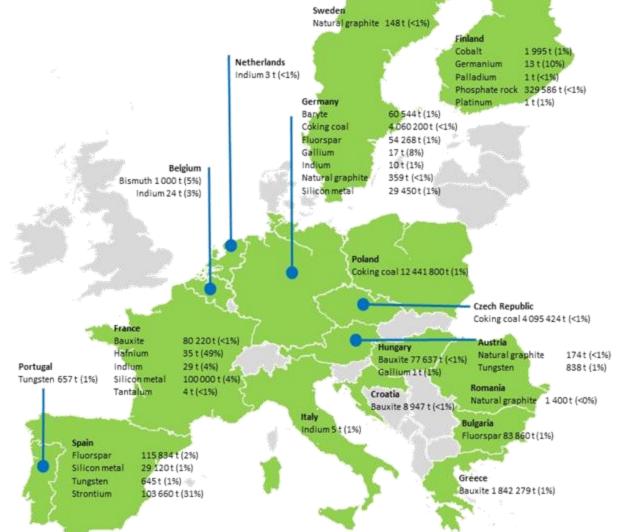
Global supply of CRMs

Critical Raw Materials 2020


Countries accounting for largest share of global supply of CRMs

EU sourcing of CRMs

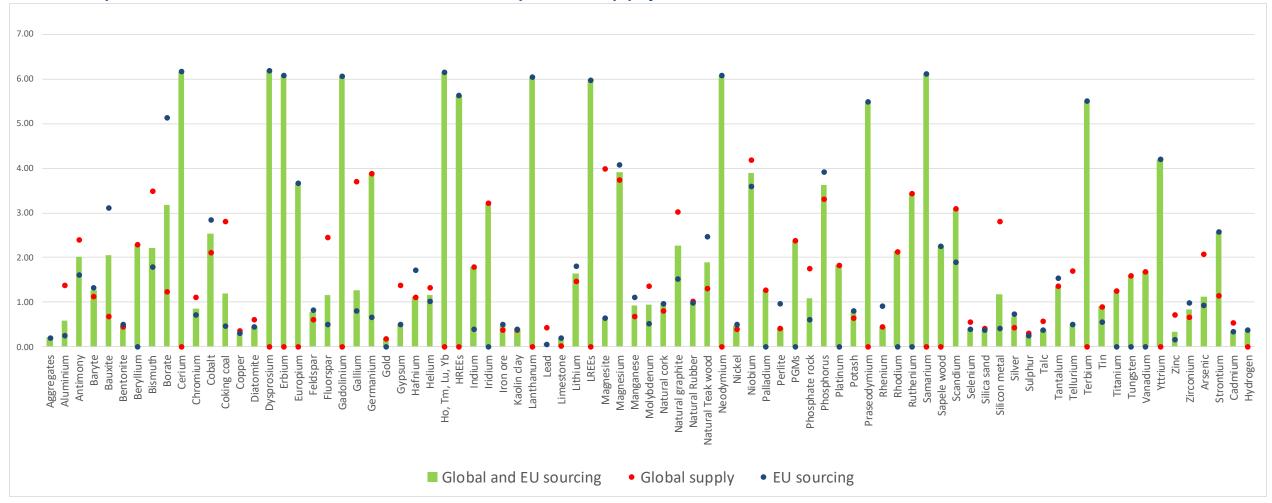
Critical Raw Materials 2020


Countries accounting for largest share of EU sourcing of CRMs

CRMs in the EU

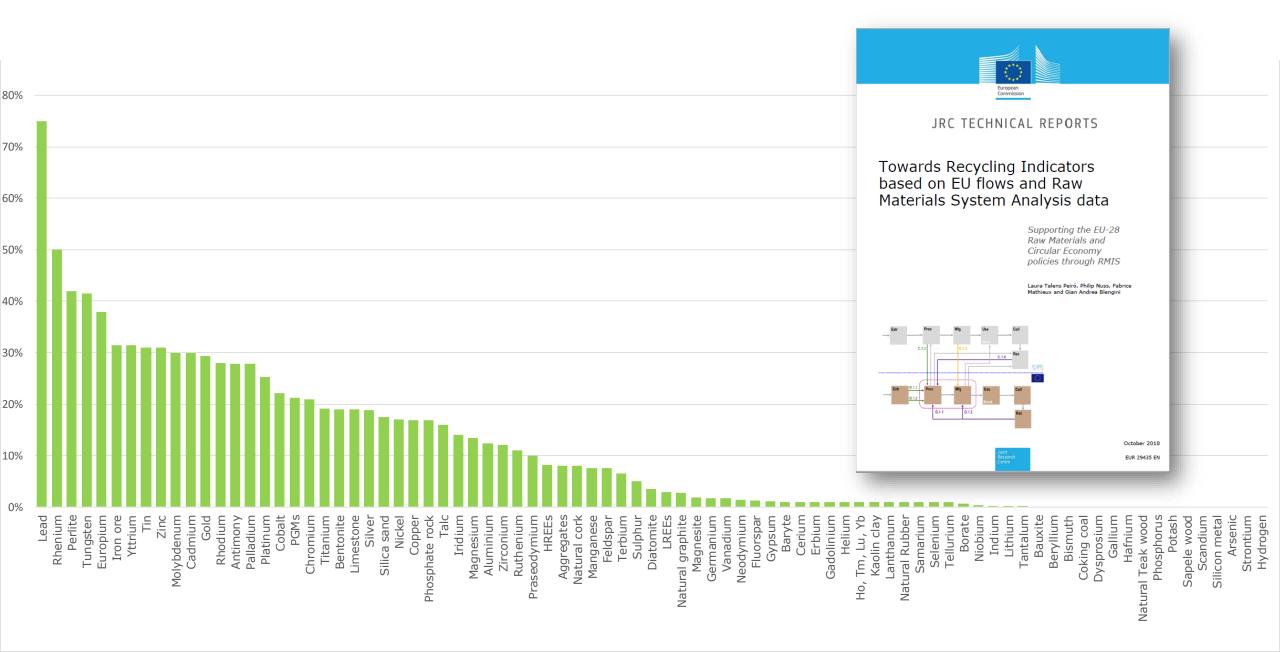
Critical Raw Materials 2020

EU producers of CRMs, in brackets shares of global supply, 2012-2016



Comparison of SR results

Critical Raw Materials 2020


Comparison of SR results based on scope of supply data used

EOL-RIR 2020

Critical Raw Materials 2020

EOL-RIR 2020

Critical Raw Materials 2020

Material	EOL-RIR (%)
Aggregates	8
Aluminium	12
Antimony	28
Arsenic	0
Baryte	1
Bauxite	0
Bentonite	19
Beryllium	0
Bismuth	0
Borate	1
Cadmium	30
Cerium	1
Chromium	21
Cobalt	22
Coking coal	0
Copper	17
Diatomite	4
Dysprosium	0
Erbium	1
Europium	38
Feldspar	8
Fluorspar	1
Gadolinium	1
Gallium	0
Germanium	2
Gold	29
Gypsum	1

Material	EOL-RIR (%)
Hafnium	0
Helium	1
Ho, Tm, Lu, Yb	1
Hydrogen	0
Indium	0
Iridium	14
Iron ore	31
Kaolin clay	1
Lanthanum	1
Lead	75
Limestone	19
Lithium	0
Magnesite	2
Magnesium	13
Manganese	8
Molybdenum	30
Natural cork	8
Natural graphite	3
Natural Rubber	1
Natural Teak wood	0
Neodymium	1
Nickel	17
Niobium	0
Palladium	28
Perlite	42
Phosphate rock	17
Phosphorus	0

Material	EOL-RIR (%)
Platinum	25
Potash	0
Praseodymium	10
Rhenium	50
Rhodium	28
Ruthenium	11
Samarium	1
Sapele wood	0
Scandium	0
Selenium	1
Silica sand	18
Silicon metal	0
Silver	19
Strontium	0
Sulphur	5
Talc	16
Tantalum	0
Tellurium	1
Terbium	6
Tin	31
Titanium	19
Tungsten	42
Vanadium	2
Yttrium	31
Zinc	31
Zirconium	12

Circular Economy Monitoring Framework

Strasbourg, 16.1.2018 COM(2018) 29 final

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

on a monitoring framework for the circular economy

{SWD(2018) 17 final}

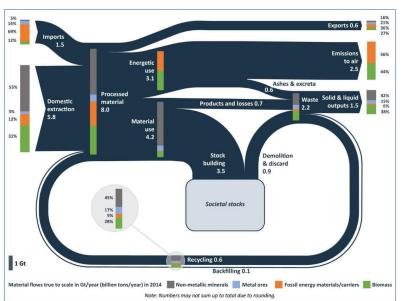


Figure 1: Material flows in the economy (EU-28, 2014)9, 10

Result in t/year for the year 2012

Imports

Primary material: 10 200 : Processed material: 561 t Product: 11 400 t Waste: 15 t **MSA Studies**

end of life stock

Addition to landfill

and tailings

Waste: 9 290 t

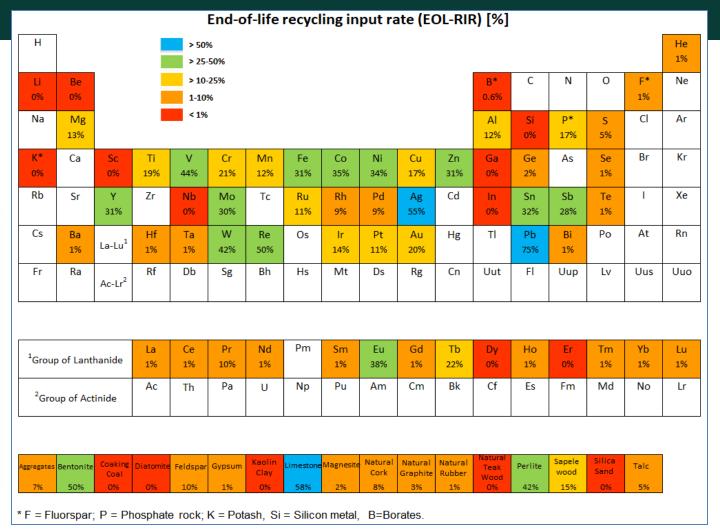
Exports

Primary material [t]

Product [t]

Waste [t]

Secondary material [t] Processed material [t]


Output from the value chain [t] In use dissipation [f] Nonfunctional recycling [t]

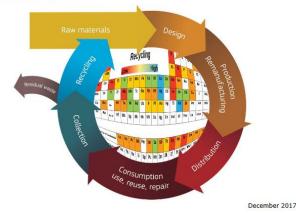
Primary material: 111 t Processed material: 4 760 t

Raw Materials Scoreboard

The role of recycling to meet demand for raw materials.

Report on CRMs in **Circular Economy**

Raw Materials Initiative Circular Economy



Critical raw materials and the circular economy

Background report

FUR 28832 FN

Fabrice Mathieux, Fulvio Ardente, Silvia Bobba, Philip Nuss, Gian Andrea Blengini, Patricia Alves Dias, Darina Blagoeva, Cristina Torres de Matos, Dominic Wittmer, Claudiu Pavel, Tamas Hamor Hans Saveyn, Bernd Gawlik, Glenn Orveillon, Dries Huygens, Elena Garbarino, Evangelos Tzimas, Faycal Bouraoui, Slavko Solar

Objectives:

 To help EU Member States implement the new provisions on critical raw materials in the EU Waste Framework Directive

 Provide information, data sources and identify best practices and possible further actions

Issued in January 2018 (SWD(2018)36), taking into account the 2017 list of 27 critical raw materials

Key Sectors:

- Electric and Electronic Equipment
- Automotive
- **Batteries**
- Renewable Energy
- Defense equipment
- Chemicals & Fertilizers

JRC Science for policy report: 'Recovery of critical and other raw materials from mining waste and landfills'

Raw Materials Initiative Circular Economy

JRC SCIENCE FOR POLICY REPORT

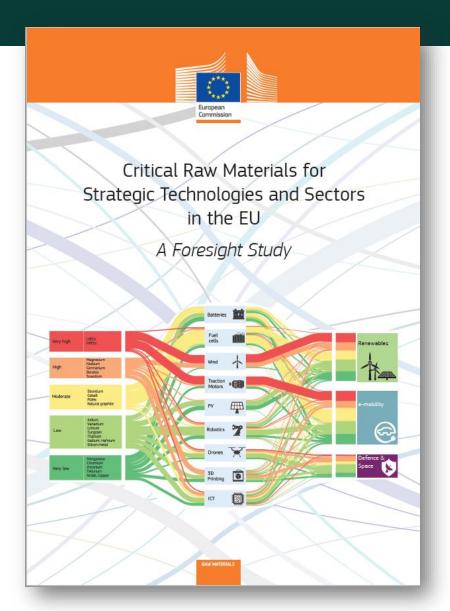
Recovery of critical and other raw materials from mining waste and landfills

State of play on existing practices

Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M. (Editors)

2019

Delivers on action #39 of the Circular Economy Action Plan:

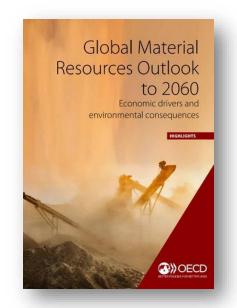


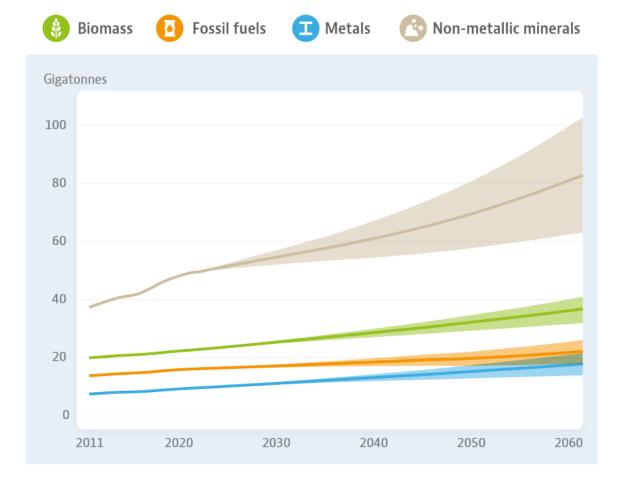
"Sharing of **best practice** for the **recovery** of critical raw materials from **mining waste** and **landfills**

- 6 examples of **existing practices** for the **recovery** of critical, and other materials from **extractive waste** and **landfills**.
- Enable increased recycling and recovery of critical and other raw materials
- Support Member States to promote the recovery of critical raw materials as stated in the Waste framework directive (2018/851)

JRC foresight study on CRMs in strategic sectors

Speech | 3 September 2020 | Brussels


Speech by Vice-President Šefčovič at the Press Conference on critical raw materials resilience in the EU


 In the world of <u>tomorrow</u>, this overreliance may become even more acute. Our <u>strategic foresight tells us that the demand for</u> <u>raw materials is only going to rise</u>: for example, Europe will need almost <u>60 times more lithium and 15 times more cobalt by</u> <u>2050</u> for electric cars and energy storage alone. Demand for <u>rare</u> <u>earths</u> used in permanent magnets, critical for products like wind generators, could <u>increase ten-fold in the same period</u>.

JRC Report: → up to 60 times and up to 15 times...

OECD forecasts that **global** materials demand will more than double from 79 billion tonnes today to 167 billion tonnes in 2060.

Speech by Vice-President Šefčovič at the Press Conference on critical raw materials resilience in the EU

 We cannot replace our current reliance on fossil fuels with one on critical raw materials.

Global competition for resources will become fierce in the coming decade.

Dependence on critical raw materials may soon replace today's dependence on oil.

ELECTRO-OPTICAL SYSTEMS:

NOSE:

Kevlar

SENSORS &

ELECTRONICS:

Cadmium **Tellurium** Mercury Germanium Neodymium Yttrium Aluminium Copper Beryllium Indium

Tantalum

Gallium

Cadmium

Tellurium

Rare earths

Bervllium

Silver

Mercury

Cobalt .

WINGS:

Carbon Epoxy composites Titanium Aluminium Vanadium Copper Magnesium Manganese

CANOPY:

Spacial Glass

ENGINE:

Nickel Cobalt Chromium Molvbdenum Aluminium Titanium Hafnium Vanadium Tantalum Tungsten

Carbon Epoxy **NOZZLE &** POST-

TAIL:

COMBUSTION: Carbon Carbon

composite

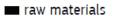
FUSELAGE:

Carbon Epoxy composite Aluminium 7inc

Magnesium Copper

Zirconium

LANDING


GEAR:

Carbon Epoxy composite Aluminium

FLAPS:

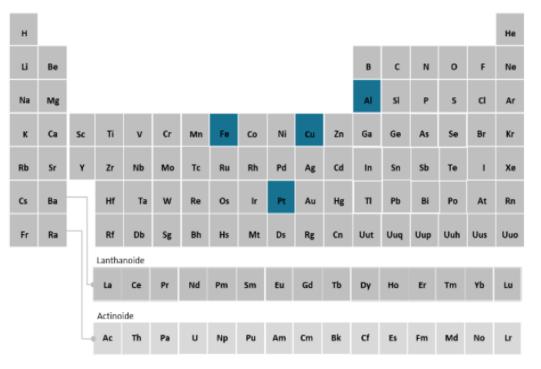
Iron Chromium Nickel Molvbdenum Aluminium

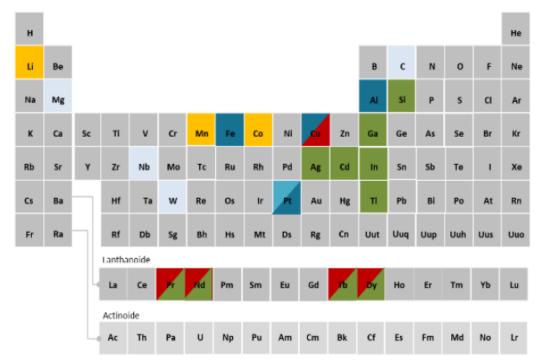
Titanium

critical raw materials

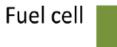
Batteries (key to low-carbon mobility)

Raw materials for <u>key technologies</u> and strategic sectors as renewable energy, <u>e-mobility</u>, digital, space and defence is one of the prerequisites to achieve climate neutrality.




Batteries (advanced Li-ion technology) Aluminium: for battery Graphite: Natural or Cobalt: in cathode packaging or as current synthetic high-grade purity materials in LCO, NCA collector foil (cathode), in in anode electrode in all Liand NMC batteries NCA batteries ion battery types Copper: as current collector Lithium: as lithium-cobalt Manganese: in cathode foil at anode side, in wires Mn materials for NMC and oxide (cathode) and as salt LMO batteries and other conductive parts (electrolyte) in Li-ion battery Niobium: in future anode Nickel: as hydroxide or and cathode material intermetallic compounds in (coatings) to improve stability NMC. NCA batteries Non-critical material and energy density Critical material Titanium: in future anode Silicon: in (future) anodes materials and coatings, in to enhance energy density LTO, for battery packaging

Batteries



Electrical motor

Renewable energy

Light weighting

22nd International Congress for Battery Recycling ICBR 2017 Vera Susanne Rotter- Materials in a Circular Economy

Magnets

Wind turbines

- Aluminium: as lightweight material in nacelle equipment, blades, etc.
- Boron: in composition of neodymium iron boron magnets or as lubricant
- Chromium: essential for stainless steel and other alloys in rotor and blades

- Cu Copper: widely used in generator windings, cables, inverters, control systems
- Dysprosium: important additive of neodymium – iron – boron permanent magnets
- Fe composition for tower, nacelle, rotor and foundation

- Pb Lead: for soldering or cable sheathing in electricity transmission (offshore)
- Manganese: essential for steel production used for many parts of a turbine
- Molybdenum: in stainless steel composition for many components of the turbine

- Neodymium: in permanent magnets (NdFeB) for electricity generation
- Ni Nickel: in alloys and stainless steel for different components of the turbine
- Niobium: a microalloying element in high strength structural steel for towers

Praseodymium: together with neodymium in permanent magnets

Non-critical material

Critical material

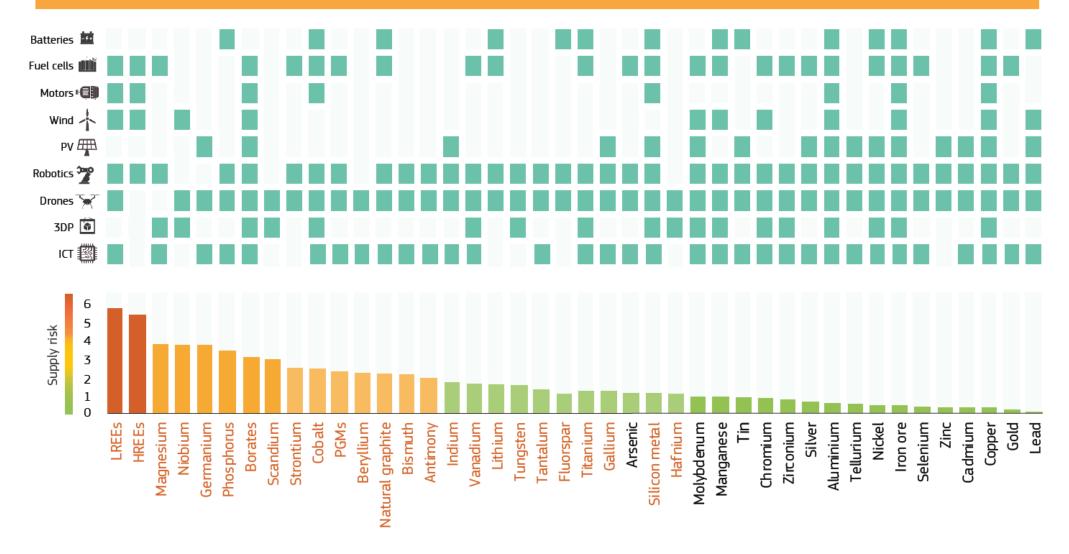
Solar

Solar photovoltaic

- Aluminium: in panel frames and inverters or in alloys for construction and support
- Boron: as dopant (p-type) in crystal lattice of the silicon-based wafers
- Cd Cadmium: in thin-film cadmium telluride (CdTe) photovoltaic technology

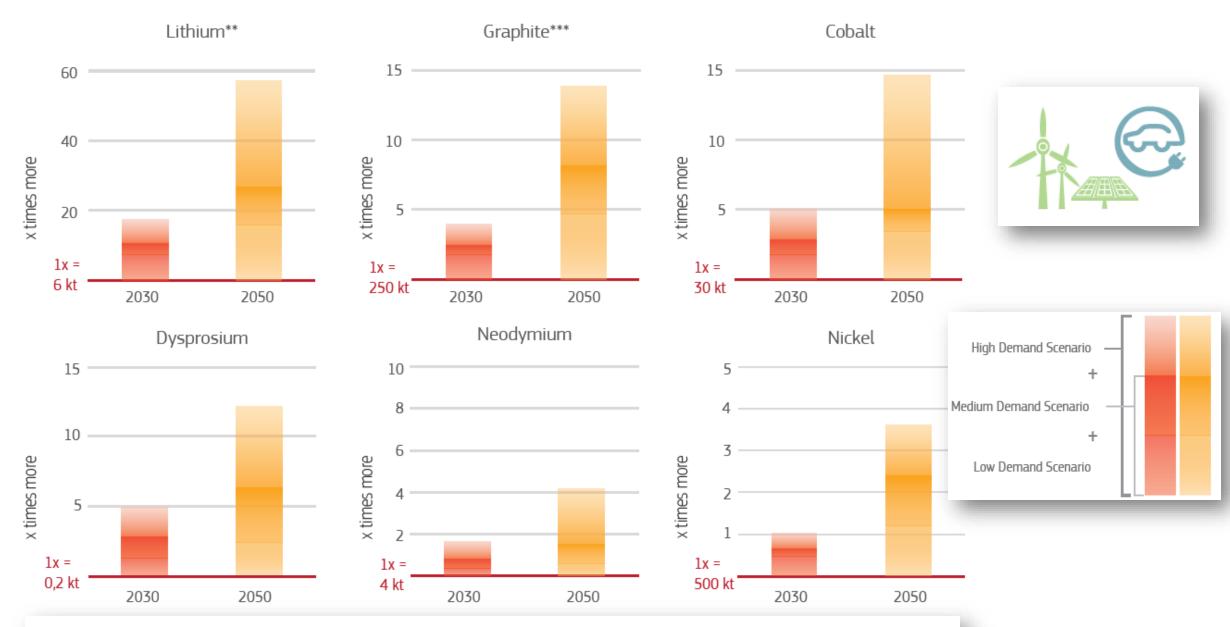
- Cu wires, cables, inverters, also in CIGS technology
- Gallium: as dopant in semiconductors or in CIGS technology
- Indium: as indium-tin-oxide (ITO) conductive layer or in CIGS technology

- Fe Iron: in steel alloys for different parts and in fixing systems of PV installations
- Pb as solder for electric circuits and interconnectors
- Molybdenum: as back contact for CIGS or in stainless steel frames


- Nickel: in electroplating or in stainless steel frames, fasteners and connectors
- Selenium: in thin-film copper indium gallium selenide (CIGS) solar cell
- Silicon: as semiconductor material in crystalline or amorphous solar cells

- Silver: as conductive paste on front and back side of the crystalline solar cells
- Tellurium: in thin-film cadmium telluride (CdTe) photovoltaic technology
- Sn for soldering or with indium in conductive layers (ITO)

- Zinc: as transparent conductive oxide in the front contact of solar cells
- Ge semiconductor materials for multi-junction solar cells
- Non-critical material


SUPPLY RISK OF RAW MATERIALS FOR KEY TECHNOLOGIES

Technologies Materials **Batteries** Supply Risk Sectors (sorted largest to smallest) Fuel LREES HREES cells Very high Renewables Magnesium Niobium Wind High Germanium Borates Scandium Traction Motors Strontium Cobalt PGMs Moderate Natural graphite # PV Indium Vanadium Lithium Robotics Low Tungsten Titanium Gallium, Hafnium Silicon metal Drones Defence & Manganese Chromium Space Zirconium Very low Tellurium 3D Printing Nickel, Copper ICT

Combined critical raw materials use in different technologies in the EU in 2030 and 2050

Speech by Vice-President Šefčovič at the Press Conference on critical raw materials resilience in the EU

- Raw materials will play a hugely important part in our future, especially given the ongoing transition towards a green and digital economy - a trend not only accelerated, but one, which lies at the heart of our recovery.
 - We must support innovation for alternatives and resource We need to ensure a secure and sustainable supply of raw materials to meet the needs of the clean and digital technologic including in the health sector and the space and defence
- In order to succeed, we must acknowledge some hard truths.
- ine simple truth also is that we are scale up reuse, repair and resource unsustainable raw materia need to scale up reuse, renovation for atternatives and resource environmental and we also need to scale up reuse, renovation for atternatives and resource unsustainable raw materia.

efficiency,

 Today's Action Plan outlines concrete steps we are taking in response – altogether, they will help make Europe more resilient

Thank you

EU Science Hub: ec.europa.eu/jrc

@EU ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Eu Science Hub

rmis.jrc.ec.europa.eu ec-rmis@ec.europa.eu

