

Theresia Perger, Hans Auer, and Sebastian Zwickl-Bernhard TU Wien

openENTRANCE Stakeholder Workshop 16.01.2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 835896

Scope of the case study

- Communities of actors are energy communities:
 - Voluntary participation and consideration of individual willingness-to-pay
 - Low entry barriers: No closed systems; all members are connected to the distribution network
 - Trading and sharing of locally generated energy within a certain framework: E.g., with a local electricity/energy market, here as <u>Peer-to-Peer Trading</u>
 - Dynamic phase-in and phase-out of members
- Upscaling the <u>potential of energy communities</u> for different European countries based on building stock, PV potential, electricity consumption
- Reference countries:

2

- Austria, Greece, Spain, Norway, England
- Quantitative upscaling of the local energy community potential is conducted for Europe as a whole

UPSCALING THE POTENTIAL OF ENERGY COMMUNITIES

PEER-TO-PEER TRADING MODEL

FRESH:COM

FRESH:COM

- "FaiR Energy SHaring in Local COMmunities"
- Local Energy Community (EC):
 - Members are consumers or *prosumers*
 - Private households or small or medium-sized enterprises (SMEs)
 - Participants have different reasons to join an EC (economic or ecologic aspects)
 - Fully democratic participation: voluntary participation, willingness-to-pay for renewable energy
 - Renewable energy technologies: PV and battery storage
 - Peer-to-peer trading via public grid
- Linear optimization model made open-source during this project (see GitHub: <u>https://www.github.com/tperger/FRESH-COM</u>)
- Objective function: Maximizing the community's total welfare
- Three scientific publications:
 - [1] T. Perger et al., PV sharing in local communities: Peer-to-peer trading under consideration of the prosumers' willingness-to-pay, Sustainable Cities and Society, Volume 66, 2021, <u>https://doi.org/10.1016/j.scs.2020.102634</u>.
 - [2] Perger T and Auer H. Dynamic participation in local energy communities with peer-to-peer trading [version 1; peer review: 1 approved]. Open Research Europe 2022, 2:5 (<u>https://doi.org/10.12688/openreseurope.14332.1</u>)
 - [3] Perger, T., Zwickl-Bernhard, S., Golab, A., & Auer, H. (2022). A stochastic approach to dynamic participation in energy communities. Elektrotechnik Und Informationstechnik : E & i. <u>https://doi.org/10.1007/s00502-022-01069-2</u>

ENTRANCE

Results FRESH:COM

Results from [1] T. Perger et al., PV sharing in local communities: Peer-to-peer trading under consideration of the prosumers' willingness-to-pay, Sustainable Cities and Society, Volume 66, 2021, <u>https://doi.org/10.1016/j.scs.2020.102634</u>.

Peer-to-peer trading in a community of 10 members (specific hour)

Peer-to-peer trading in a community of 10 members (cost and emission savings over a year)

10

Emission savings tCO2/year

0.5

-0.5

Upscaling the potential of energy communities to country level: reference countries

Upscaling the potential of energy communities to country level: reference countries

- 1. <u>City areas (high population density)</u>
 - Large apartment buildings
 - Aggregation of tenants' load profiles
 - Possibly with different types of businesses in the buildings (shops on the first floor, offices, ...)
 - Limited rooftop area for PV systems
- 2. Town areas (medium density)
 - Mostly small apartment buildings
 - Limited rooftop area for PV systems
 - Some businesses included (e.g., shops, bakery, ...)
- 3. <u>Suburban areas (low-to-medium density)</u>
 - Mix of apartment buildings and single-family houses
- 4. <u>Rural areas (low population density)</u>
 - Mostly single houses
 - Sufficient rooftop area available

pro participation at a

Х

Local Energy Communit

against participation at a Local Energy Community

X

Source: [4] Fina et al. (2019) Profitability of PV sharing in energy communities: Use cases for different settlement patterns. *Energy* 189.

Results Upscaling the potential of energy communities to country level: reference countries

Impact of ECs on grid purchases, grid feed-in, shared self-consumption, and battery operation: <u>Austria</u>

Results Upscaling the potential of energy communities to country level: reference countries

- Impact of ECs on individual costs
- Impact of ECs on individual emissions

Results Upscaling the potential of energy communities to country level: reference countries

- Impact of ECs on individual costs
- Impact of ECs on individual emissions

Results Upscaling: Potential on European level Estimation based on the reference countries:

• For each cluster of countries represented by one of the five reference countries, the number of energy communities is

 $EC_{cluster} = EC_{ref. country} \frac{population_{cluster}}{population_{ref. country}}$

	city	town	suburban	rural
Austria	115,641	428,320	285,157	3,934,573
Greece	21,393	139,857	57,609	802,394
Spain	69,458	132,814	220,718	1,191,911
Norway	9,751	104,834	78,358	747,398
England	5,024	192,906	13,539	3,123,995
Europe total	221,266	998,730	655,381	9,800,271

Expert comments

From <u>Ulfert Höhne</u> (energy cooperative "ourpower", see <u>https://www.ourpower.coop/</u>)

