Impact of decentralization of investment decisions in power systems

Case Study 5 definition

Nadia Oudjane (EDF/R&D)

EMP-E/FG7, October 8, 2020

Join the discussion on

Slido.com

Code #EMP_E2020

Which issue will be addressed?

□ Centralization vs decentralization of investments

- Centralization allows to exploit in a common objective
 - >Geographical disparities in generation & consumption
 - > Reduction of uncertainties by averaging
 - ➤Information of the whole system ➤Lower Cost of Capital

- >Acceptance & active participation of local actors
- >Cross-sectoral coupling (heat, biomass, mobility, ...)
- Demand side management

□ Objectives

- Assessing the impact of decentralization of investment decisions on power systems
- Giving insights for relevant coordination mechanisms

Which geographical scales?

Global vs Local

Global: Europe

Local: Regions

Global: Europe Local: States

Global: State

Local: Regions

(first option)

October 8, 2020

Decentralization of investment decisions

From centralization to full decentralization...

□ 3 variants

1. Centralization

(Optimization problem)

- >Global cost function = investment and operational costs
- ➤ Global constraints = supply/demand balance at each node of the grid ecological target for the whole system

 Ex: emissions limits or minimal renewable penetration

2. Decentralization of targets

October 8, 2020

(Optimization problem)

- >Global cost function = investment and operational costs
- >Local constraints = supply/demand balance at each node of the grid specific ecological targets to each local entity

3. Full decentralization

(Game problem)

- >Local cost functions = investment and operational costs, CO2 emissions, ...
- >Local constraints = supply/demand balance, specific ecological targets, ...
- Assumptions on decisions/information/interactions between local actors / central operator offering a backup

Which optimization tool? Which Input / Output?

Transmission grid investment costs

Costs and constraints of technologies

Initial Installed capacities

CO2 Budget

CO2 and fuel prices

Input from openENTRANCE | **Scenarios**

Elec Demands per use (MWh) Ancillary services requirements

Demand response potentials

Renewables potentials

Demand-Response

characteristics

2050

Wind, PV, hydro Hourly profiles

Demand hourly profiles Ancillary services requirements hourly profiles

> Exchanges at **Boundaries**

Distribution grid reinforcement costs Initial transmission and distribution Grid

Capacity expansion (generation and grid)

- Seasonal Storage valuation (stochastic)
- **Unit Commitment** (Monte-Carlo)

Plan4EU

Electricity sector

generation and grid mix

operational costs

CO2 emissions costs

Output

(thermal, hydro, renewables curtailments, storage, demand response

Electricity not served

Lower bound for optimal cost

technology

Plan4EU model

Investment

Capacity Expansion Model

- Stochastic investment planning
- Power system on a single year operation (2050 horizon)
- No pathway to reach the final electricity mix

Generation & grid mix/capacities Scenario for the target year (2050)

Expected results

□ Indicators

- Investments and operation costs
- Quasi-optimal mix (generation, storage, grid)
- CO2 emissions
- renewable curtailment level
- Prices as dual variables related to supply/demand constraints or capacity limits of power lines
- □ Variability of those indicators !!!
- by simulating the operation decisions on several scenario of uncertainties
- ☐ Bring relevant recommendations for coordination

What do you think?

Join the discussion on

Slido.com

Code #EMP_E2020

3 Polls questions

- 1. Which geographical scale?
- 2. Which targets (constraints)?
- 3. Which indicators?

